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Abstract. A weakly biased normal-metal–superconductor junction is considered as a potential device in-
jecting entangled pairs of quasi-particles into a normal-metal lead. The two-particle states arise from
Cooper pairs decaying into the normal lead and are characterized by entangled spin- and orbital degrees
of freedom. The separation of the entangled quasi-particles is achieved with a fork geometry and nor-
mal leads containing spin- or energy-selective filters. This solid state entangler is characterized by noise
cross–correlations which are identical to the noise in one lead, a signature consistent with entanglement.
A connection to Bell-type experiments is envisioned (cond-mat/0009193).

PACS. 03.67.Hk Quantum communication – 72.70.+m Noise processes and phenomena – 74.50.+r Prox-
imity effects, weak links, tunneling phenomena, and Josephson effects

The nonlocal nature of quantum mechanics has been
demonstrated theoretically [1] using entangled pairs of
particles several decades ago. Recently, potential appli-
cations of this entanglement have been found in quan-
tum cryptography [2], in quantum teleportation [3], and
in quantum computing [4]. It is thus necessary to search
for practical ways to produce such pairs given a specific in-
teraction between particles. While past experiments have
focused on pairs of photons [5] propagating in vacuum, at-
tention is now turning to electronic systems [6], where this
entanglement interaction can be stronger while coherence
can still be maintained over appreciable distances in meso-
scopic conductors. A scheme was recently presented [7]
which discussed the entanglement of electrons via the ex-
change interaction in pairs of quantum dots. Here, we pro-
pose a rather robust electronic entanglement scheme based
on the Andreev reflection of electrons and holes at the
boundary between a normal metal and a superconductor.

The microscopic description of superconductivity re-
lies on the concept of Cooper pairs. A normal metal in
vicinity to a superconductor bears the trace of this phe-
nomenon through the non-vanishing of the Gor’kov Green
function [8] F = 〈ck↑c−k↓〉 (ckσ denote the usual elec-
tron annihilation operators). This proximity effect is ex-
plicit in several experiments [9]. While in a superconduc-
tor F = ∆/λ is a consequence of a nonzero gap parameter
∆ (λ is the pairing potential), the coherence surviving
in the adjacent normal metal can be understood through
the presence of evanescent Cooper pairs. These involve
two electrons with entangled spin- and orbital degrees of
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freedom, carrying opposite spins in the case of usual s-
wave pairing and with kinetic energies above and below
the superconductor chemical potential. The electron wave
function remains in this singlet state as long as spin orbit
scattering and magnetic impurity scattering – processes
which flip the spin – can be ignored.

In order to detect this entanglement and implement
it for applications, it is necessary to achieve a spatial
separation between the two constituent electrons. The
entanglement apparatus which is proposed here consists
of a mesoscopic normal-metal–superconductor (NS) junc-
tion with normal leads arranged in a fork geometry (see
Fig. 1). Using appropriate spin- or energy-selective filters
in the two normal leads the quasi-particle pairs are prop-
erly separated and their entanglement can be quantified
through a comparison of the intra- and inter- lead number
correlations.

First, note that for a single channel NS wire the zero
frequency fluctuations of the currents carried by electrons
with different spins are completely correlated,

〈〈 IσI−σ 〉〉ω=0 ≡
∫

dt 〈〈Iσ(t)I−σ(0)〉〉 = 〈〈I2
σ〉〉ω=0, (1)

hence 〈〈(Iσ − I−σ)2〉〉ω=0 = 0 (〈〈...〉〉 implies the subtrac-
tion of the average currents). This correlation of the two
quasi-particles with opposite spins is a consequence of the
entanglement of the Cooper pairs in the wire.

Next, recall that the current noise cross-correlations in
a SN-NN fork geometry as in Figure 1a are positive when
the transmission between the superconductor and the nor-
mal leads is low [10]. The unusual sign (for fermions) of
these correlations is due to paired electrons penetrating
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Fig. 1. Normal-metal–superconductor (NS) junction with
normal-metal leads arranged in a fork geometry. (a) With-
out filters, entangled pairs of quasi-particles (Cooper pairs)
injected in N3 propagate into leads N1 or N2 either as a whole
or one by one. The ferromagnetic filters in setup (b) separates
the entangled spins, while the energy filters in (c) separate
electron- and hole quasi-particles.

the two normal leads separately, c.f. Figure 1a. The posi-
tive correlations are further enhanced when the competing
channel (with paired electrons entering the leads jointly)
is suppressed through the addition of appropriate spin- or
energy selective filters to the normal leads, see Figures 1b
and c. If spin-orbit and magnetic impurity scattering are
irrelevant, the wave function of the entangled states gen-
erated with ideal spin/energy filters then is of the type:

|Φent
ε,σ〉 = α|ε, σ;−ε,−σ〉+ β| ∓ ε± σ;±ε∓ σ〉 , (2)

where the first (second) argument in |φ1;φ2〉 refers to the
quasi-particle state in lead 1 (2) evaluated behind the fil-
ters and the upper (lower) signs refer to the setup project-
ing the spin (energy); the coefficients α and β can be tuned
by external parameters, e.g., a magnetic field. In such a
multi-terminal device, the measurement of the zero fre-
quency noise cross-correlator 〈〈 Iσ1I−σ2 〉〉ω=0 then serves
to detect electron entanglement.

A step like dependence of the gap parameter at the NS
interface is assumed, subgap transport is specified, while
the normal leads are single-channel and ballistic. Spin-flip
processes are ruled out. Using the scattering formulation
of NS transport [11], the current operator per spin in nor-
mal lead n is defined as

Iσn(t) =
ie~
2m

∑
α,α′

∫ ∞
0

dεdε′{[u∗εα(x)
↔
∂xuε′α′(x)] γ†εαγε′α′

− [v∗εα(x)
↔
∂x vε′α′(x)] γε′α′γ†εα} exp[i(ε− ε′)t],

(3)

where the operators γεα describe electron and hole
Bogoliubov quasiparticles (with positive energies ε) on the
normal side with α = {p, σ, n} a multi-index characteriz-
ing the ‘charge’ p (= e, h), spin σ (= ±1/2), and incidence
(lead n); f

↔
∂x g ≡ f∂xg − g∂xf . The associated wave

functions (uεα(x) and vεα(x)) are expressed in terms of
the scattering matrix sα,α′ ; e.g., for an electron with spin
σ incident from lead n and observed in lead m at xm

uεeσn(xm) '
[
δnmeik+xn + seσn,eσme−ik+xm

]
/
√
hv+,

vεeσn(xm) '
[
seσn,h−σmeik−xm

]
/
√
hv−, (4)

with wave numbers k± =
√

2m(µS ± ε) and the quasi-
particle velocities v± = ~k±/m (µS is the chemical poten-
tial in the superconductor). The difference between the
two wave numbers k± will be neglected (µS � ∆).

Let us now turn to the fork geometry of Figure 1: the
current leads N1 and N2 are connected to N3, which it-
self is terminated with the NS interface. We discuss two
schemes: a) two ferromagnetic metal contacts (with mag-
netizations in opposite directions) in leads N1 and N2

block the propagation of the opposite spin, see Figure 1b,
b) two energy filters in N1 and N2 (coherent quantum
dots) select the kinetic energies of electrons and holes sym-
metrically above and below the superconducting chemical
potential (Fig. 1c). In both proposals, the penetration of a
Cooper pair into a given lead is prohibited, while allowing
the split pair to pass the filters. E.g., one electron propa-
gates through N1 with spin ‘up’, while simultaneously the
other electron (with opposite kinetic energy) propagates
through N2 with spin ‘down’.

The scattering matrix sα,α′ has to account for all mul-
tiple scattering processes: the Andreev reflection at the
N3S interface can be specified in terms of the transmis-
sion and reflection amplitudes t13, t23, and rii (i = 1, 2)
describing the normal-metal part of the device [12]. The
latter include the scattering by the ‘beam splitter’ N3 ←→
N1, N2, and account for the presence of spin or energy fil-
ters in leads N1 and N2. The corresponding transmission
and reflection amplitudes are found iteratively following
the scheme sketched in Figure 2 and accounting for all
interference processes in the device.

Beam Splitter: Time reversal invariance is assumed for
simplicity. It is then possible to express the transmission
probability, say, between leads N1 and N2 in terms of the
other two transmissions:

T (2)
12 = T (2)

13 T
(2)
23 [2− T (2)

Σ ± 2(1− T (2)

Σ )1/2]/T (2)

Σ

2
, (5)

where T (2)
Σ ≡ T

(2)
13 +T (2)

23 , and T (2)
ij = |t(2)

ij |2. For a fully sym-
metric beam splitter T (2)

ij = 4/9. Reference [13] focused on
a setup which is symmetric between 1and 2. The lower
sign in (5) allows to consider also the case where all trans-
missions are small, thus a more complete parametrization
is obtained. The reflection amplitudes of the splitter are

r(2)
ii = t(2)

jk

∗
t(2)
ij t

(2)

ik [T (2)

jk

−1 − T (2)
ij

−1 − T (2)

ik

−1]/2. (6)
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Fig. 2. The scattering matrix sα,α′ determining the noise
correlator (10) incorporates all the internal scattering fea-
tures of the fork, the beam splitter (→ t(2), r(2)), the stubs
(→ t(1), r(1)), and the normal scattering at the NS interface
(→ t, r).

The phases of the reflection and transmission amplitudes,
in addition to describing the intrinsic properties of the
links between the three wires, account for the choice of the
origin in each lead. Practical choices for these origins are:
a) the position of the NS interface in lead N3 and b) that
of the filters in N1 and N2. Typical phases accumulated
during free propagation are exp(±ik±b) with b a typical
length in the beam splitter.

Stubs: Their purpose is to reflect particles with the
“wrong” spin (no spin flip processes here). When block-
ing propagation through N2, transmission and reflection
amplitudes t(1)

13 , r(1)
33 , and r(1)

11 follow from the transmission
and reflection amplitudes t(2)

12 , t(2)
13 , t(2)

23 , r(2)
11 , and r(2)

22 of the
three bare leads via

t(1)
13 = t(2)

13 − (t(2)
12 t

(2)
23 − t

(2)
13r

(2)
22 )/(1 + r(2)

22 ), (7a)

r(1)
ii = r(2)

ii − t
(2)2
2i /(1 + r(2)

22 ), (i = 1, 3). (7b)

When blocking occurs at N1, the amplitudes are obtained
by exchanging the lead indices in (7a) and (7b).

NS boundary: The NS boundary is split into two parts
describing normal and Andreev scattering (Fig. 2). In or-
der to include the normal scattering component the two
scatterers {t(1)

13 , r
(1)
33 , r

(1)
11 } and {tNS, rNS, r

′
NS} are combined

to obtain the next level amplitudes:

t13 = t(1)
13 tNS/(1− r(1)

33 r
′
NS), (8a)

r33 = rNS + t2NSr
(1)
33 /(1− r

(1)
33 r
′
NS), (8b)

r11 = r(1)
11 + t(1)2

13 r
′
NS/(1− r(1)

33 r
′
NS), (8c)

where the primed reflection amplitude r′NS is associated
with the particle incident from the superconductor. Fi-
nally, we account for perfect Andreev reflection at the NS
interface; for an electron incident from N1 the scattering
amplitude reads

|seσ1,h−σ2|2 =
|t13+|2|t23−|2

1 + |r11+|2|r22−|2 + 2Re(r33+r∗33−)
, (9)

where the indices ± indicate that the energy dependent
scattering amplitudes have to be evaluated at the posi-
tive(negative) value of the quasi particle energy ε(-ε). For

each energy ε only one of the two leads, N1 or N2, is
open, resulting in a two-terminal device, thus the relations
|rii|2 = 1−|ti3|2 = |r33|2 hold. The main feature contained
in equation (9) are the Andreev type resonances building
up within the normal-metal leads. These resonances are
determined through the sign changes in Re(r33+r

∗
33−) and

their distance ∼ ~vF/L is determined via the Fermi ve-
locity vF and the characteristic size L of the region. In
addition, zeros appear in the spectral density which are a
consequence of a vanishing transmission for electrons or
holes in this three lead geometry.

The above scheme fully specifies the scattering ma-
trix sα,α′ for the case with ideal filters. For non-ideal
filters the stub should be replaced with a proper descrip-
tion of the lead N2 including its non-ideal filter; in ad-
dition, the normal scatterer described through the am-
plitudes {t13, r33, r11} above has to be combined with
an additional scatterer describing the non-ideal filter in
the lead N1. E.g., an energy filter requires inclusion of
a Fabry-Perot interferometer characterized through the
scattering amplitudes t1, t2, r

′
1, r2 and the separation d

of the double barrier system and producing a transmis-
sion tFP = t1t2 exp(ikd)/[1 − r1r

′
2 exp(2ikd)]. The reso-

nance spacing should be larger than the applied bias for a
proper device operation as a filter. The initial resonance
lines produced by the quantum dot will then be decorated
by Andreev-type resonances and zeros originating from
the NS-fork structure.

The above entangler is essentially a two terminal de-
vice where electrons with, say, a given spin from lead 1
are converted into holes with an opposite spin in lead 2.
The current correlations between 1 and 2 are positive and
can be obtained using the definition of the noise in com-
bination with (3), at T = 0,

〈〈Iσ1I−σ2〉〉 =
e2

h

∑
α,α′

∫ eV1

0

dε |sα,α′ |2(1− |sα,α′ |2), (10)

where a voltage eV1 is applied between the lead N1 and
the superconductor while keeping the lead N2 unbiased.
For the case of ferromagnetic filters, the chemical poten-
tial which enters the (sharp) electron and hole distribu-
tion functions depends also on the spin index. The multi-
indices α and α′ to be summed over in (10) depend on the
type of filters in the normal leads N1 and N2: For ferro-
magnetic filters (SN-FF) with the spin in F1(2) pointing
up (down) α = {e(h) ↑ 1} and α′ = {h(e) ↓ 2} (the prop-
agation of other states is blocked by the filters). On the
other hand, for the setup selecting a definite quasi particle
energy via Fabry-Perot type filters we have to sum over
spins with α = {e ↑(↓) 1} and α′ = {h ↓(↑) 2} (we assume
filters selecting quasi particles and quasi holes in leads N1

and N2, respectively). Applying the same voltage to the
lead N2 as well does not change the answer in the normal
fork (SN-NN) but renders the result for the ferromagnetic
filters (SN-FF) twice larger. The result (10) together with
the fact that the two currents Iσ1 and I−σ2 are neces-
sarily correlated constitutes the main justification for the
proposed entanglement device: equation (10) corresponds
precisely to the current noise in lead 1.
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Yet, in photon experiments, entanglement is identified
by a violation of Bell types inequalities – which are ob-
tained with a hidden variable theory. For electron devices,
the current fluctuations (10) are straightforwardly con-
verted into “counting” correlations as known from quan-
tum optics, defining enσn(t) =

∫ t
0

dt′Iσn(t′):

〈〈nσ1(t)n−σ2(t)〉〉|t→∞ ≈ (t/e2)〈〈Iσ1 I−σ2〉〉ω=0 , (11)

and hence 〈〈(nσ1 − n−σ2)2〉〉/〈〈n2
σ1〉〉 ≈ 0. Our electronic

entanglement apparatus can now be completed with a de-
tection apparatus in order to test non-local correlations
(Bell inequalities). For an entangler based on ferro/energy
filters, the detection apparatus involves filters of oppo-
site type (energy/ferro). Concentrating on an entangler
with energy filters, a positive energy particle emerging in
lead N1 can have either spin orientation, which can be
“measured” by connecting this lead to, say, magnetic con-
tacts with known spin orientation. In the opposite arm
one should have a similar contact but with a magneti-
zation axis rotated in order to achieve the analog of the
spin correlation experiments of reference [5]. In this case,
counting correlators analogous to equation (11) but in-
volving two arbitrary spin orientations, are required. The
violation of Bell’s inequalities in a device where each arm
contains two spin filters, each with opposite magnetiza-
tions in order to prohibit reflection back to the fork, will
be discussed elsewhere [14].

The proximity induced entanglement of quasi parti-
cles in NS-fork type devices was implicit in references [15]
and [16]. Consider the above SN-NN setup with the
lead N1 biased with respect to the superconductor,
while keeping the lead N2 at the superconductor chem-
ical potential. A finite Andreev drag current I2(V1) =
(2e/h)

∫ eV1

0
dε |se↑1,h↓2|2 will flow through lead N2 in re-

sponse to the bias eV1 across lead N1. While the exper-
iments in reference [15] use a magnetic field to separate
electron- and hole type quasi particles, the more recent
suggestion in reference [16] proposes two ferromagnetic
needles, a setup similar to our SN-FF device. This effect
is quite robust and decreases only gradually with decreas-
ing quality of the filters. The condition for it to persist
reads:

∫ eV1

0 dε[|se↑1,h↓2|2 − |se↑1,e↑2|2] > 0, implying that
the normal current injected from lead N1 to lead N2 re-
mains smaller than the ‘drag current’ due to Andreev re-
flected holes.

Summarizing, we have proposed an electronic entan-
glement device based on the proximity effect and have
shown how to probe the resulting non-local electronic cor-
relations in an emphatic way through a measurement of
the current cross-correlator. Using a special fork geome-
try with, say, Fabry-Perot filters one arrives at a natural
source of spin-entangled electron pairs, a device with po-
tential applications in quantum computing architectures
based on spintronics [17]. This device presents the advan-
tage – as compared to its ferromagnetic cousin – that it
can be realized with nowadays splitters [18] and quantum
dot technology, e.g., using semiconductor-superconductor
heterostructures [19], and does not require interdot cou-
pling. Moreover, this SN-NN device appears to be more

promising regarding potential applications for quantum
information processing: the insertion of Fabry-Perot fil-
ters destroys only the orbital entanglement of the elec-
trons, while the (most valuable) spin entanglement per-
sists, contrary to the situation in the SN-FF device where
the filters project the spin, but where the entanglement of
energy degrees of freedom persists nevertheless.
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